20 research outputs found

    LMLFM: Longitudinal Multi-Level Factorization Machine

    Full text link
    We consider the problem of learning predictive models from longitudinal data, consisting of irregularly repeated, sparse observations from a set of individuals over time. Such data often exhibit {\em longitudinal correlation} (LC) (correlations among observations for each individual over time), {\em cluster correlation} (CC) (correlations among individuals that have similar characteristics), or both. These correlations are often accounted for using {\em mixed effects models} that include {\em fixed effects} and {\em random effects}, where the fixed effects capture the regression parameters that are shared by all individuals, whereas random effects capture those parameters that vary across individuals. However, the current state-of-the-art methods are unable to select the most predictive fixed effects and random effects from a large number of variables, while accounting for complex correlation structure in the data and non-linear interactions among the variables. We propose Longitudinal Multi-Level Factorization Machine (LMLFM), to the best of our knowledge, the first model to address these challenges in learning predictive models from longitudinal data. We establish the convergence properties, and analyze the computational complexity, of LMLFM. We present results of experiments with both simulated and real-world longitudinal data which show that LMLFM outperforms the state-of-the-art methods in terms of predictive accuracy, variable selection ability, and scalability to data with large number of variables. The code and supplemental material is available at \url{https://github.com/junjieliang672/LMLFM}.Comment: Thirty-Fourth AAAI Conference on Artificial Intelligence, accepte

    How Do We Move: Modeling Human Movement with System Dynamics

    Full text link
    Modeling how human moves in the space is useful for policy-making in transportation, public safety, and public health. Human movements can be viewed as a dynamic process that human transits between states (\eg, locations) over time. In the human world where intelligent agents like humans or vehicles with human drivers play an important role, the states of agents mostly describe human activities, and the state transition is influenced by both the human decisions and physical constraints from the real-world system (\eg, agents need to spend time to move over a certain distance). Therefore, the modeling of state transition should include the modeling of the agent's decision process and the physical system dynamics. In this paper, we propose \ours to model state transition in human movement from a novel perspective, by learning the decision model and integrating the system dynamics. \ours learns the human movement with Generative Adversarial Imitation Learning and integrates the stochastic constraints from system dynamics in the learning process. To the best of our knowledge, we are the first to learn to model the state transition of moving agents with system dynamics. In extensive experiments on real-world datasets, we demonstrate that the proposed method can generate trajectories similar to real-world ones, and outperform the state-of-the-art methods in predicting the next location and generating long-term future trajectories.Comment: Accepted by AAAI 2021, Appendices included. 12 pages, 8 figures. in Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI'21), Feb 202

    ReWOO: Decoupling Reasoning from Observations for Efficient Augmented Language Models

    Full text link
    Augmented Language Models (ALMs) blend the reasoning capabilities of Large Language Models (LLMs) with tools that allow for knowledge retrieval and action execution. Existing ALM systems trigger LLM thought processes while pulling observations from these tools in an interleaved fashion. Specifically, an LLM reasons to call an external tool, gets halted to fetch the tool's response, and then decides the next action based on all preceding response tokens. Such a paradigm, though straightforward and easy to implement, often leads to huge computation complexity from redundant prompts and repeated execution. This study addresses such challenges for the first time, proposing a modular paradigm ReWOO (Reasoning WithOut Observation) that detaches the reasoning process from external observations, thus significantly reducing token consumption. Comprehensive evaluations across six public NLP benchmarks and a curated dataset reveal consistent performance enhancements with our proposed methodology. Notably, ReWOO achieves 5x token efficiency and 4% accuracy improvement on HotpotQA, a multi-step reasoning benchmark. Furthermore, ReWOO demonstrates robustness under tool-failure scenarios. Beyond prompt efficiency, decoupling parametric modules from non-parametric tool calls enables instruction fine-tuning to offload LLMs into smaller language models, thus substantially reducing model parameters. Our illustrative work offloads reasoning ability from 175B GPT3.5 into 7B LLaMA, demonstrating the significant potential for truly efficient and scalable ALM systems

    Dynamic Sparse Training via Balancing the Exploration-Exploitation Trade-off

    Full text link
    Over-parameterization of deep neural networks (DNNs) has shown high prediction accuracy for many applications. Although effective, the large number of parameters hinders its popularity on resource-limited devices and has an outsize environmental impact. Sparse training (using a fixed number of nonzero weights in each iteration) could significantly mitigate the training costs by reducing the model size. However, existing sparse training methods mainly use either random-based or greedy-based drop-and-grow strategies, resulting in local minimal and low accuracy. In this work, we consider the dynamic sparse training as a sparse connectivity search problem and design an exploitation and exploration acquisition function to escape from local optima and saddle points. We further design an acquisition function and provide the theoretical guarantees for the proposed method and clarify its convergence property. Experimental results show that sparse models (up to 98\% sparsity) obtained by our proposed method outperform the SOTA sparse training methods on a wide variety of deep learning tasks. On VGG-19 / CIFAR-100, ResNet-50 / CIFAR-10, ResNet-50 / CIFAR-100, our method has even higher accuracy than dense models. On ResNet-50 / ImageNet, the proposed method has up to 8.2\% accuracy improvement compared to SOTA sparse training methods

    Towards Personalized Federated Learning via Heterogeneous Model Reassembly

    Full text link
    This paper focuses on addressing the practical yet challenging problem of model heterogeneity in federated learning, where clients possess models with different network structures. To track this problem, we propose a novel framework called pFedHR, which leverages heterogeneous model reassembly to achieve personalized federated learning. In particular, we approach the problem of heterogeneous model personalization as a model-matching optimization task on the server side. Moreover, pFedHR automatically and dynamically generates informative and diverse personalized candidates with minimal human intervention. Furthermore, our proposed heterogeneous model reassembly technique mitigates the adverse impact introduced by using public data with different distributions from the client data to a certain extent. Experimental results demonstrate that pFedHR outperforms baselines on three datasets under both IID and Non-IID settings. Additionally, pFedHR effectively reduces the adverse impact of using different public data and dynamically generates diverse personalized models in an automated manner

    Rethinking Data Distillation: Do Not Overlook Calibration

    Full text link
    Neural networks trained on distilled data often produce over-confident output and require correction by calibration methods. Existing calibration methods such as temperature scaling and mixup work well for networks trained on original large-scale data. However, we find that these methods fail to calibrate networks trained on data distilled from large source datasets. In this paper, we show that distilled data lead to networks that are not calibratable due to (i) a more concentrated distribution of the maximum logits and (ii) the loss of information that is semantically meaningful but unrelated to classification tasks. To address this problem, we propose Masked Temperature Scaling (MTS) and Masked Distillation Training (MDT) which mitigate the limitations of distilled data and achieve better calibration results while maintaining the efficiency of dataset distillation.Comment: ICCV 202

    Gentopia: A Collaborative Platform for Tool-Augmented LLMs

    Full text link
    Augmented Language Models (ALMs) empower large language models with the ability to use tools, transforming them into intelligent agents for real-world interactions. However, most existing frameworks for ALMs, to varying degrees, are deficient in the following critical features: flexible customization, collaborative democratization, and holistic evaluation. We present gentopia, an ALM framework enabling flexible customization of agents through simple configurations, seamlessly integrating various language models, task formats, prompting modules, and plugins into a unified paradigm. Furthermore, we establish gentpool, a public platform enabling the registration and sharing of user-customized agents. Agents registered in gentpool are composable such that they can be assembled together for agent collaboration, advancing the democratization of artificial intelligence. To ensure high-quality agents, gentbench, an integral component of gentpool, is designed to thoroughly evaluate user-customized agents across diverse aspects such as safety, robustness, efficiency, etc. We release gentopia on Github and will continuously move forward

    Neurogenesis Dynamics-inspired Spiking Neural Network Training Acceleration

    Full text link
    Biologically inspired Spiking Neural Networks (SNNs) have attracted significant attention for their ability to provide extremely energy-efficient machine intelligence through event-driven operation and sparse activities. As artificial intelligence (AI) becomes ever more democratized, there is an increasing need to execute SNN models on edge devices. Existing works adopt weight pruning to reduce SNN model size and accelerate inference. However, these methods mainly focus on how to obtain a sparse model for efficient inference, rather than training efficiency. To overcome these drawbacks, in this paper, we propose a Neurogenesis Dynamics-inspired Spiking Neural Network training acceleration framework, NDSNN. Our framework is computational efficient and trains a model from scratch with dynamic sparsity without sacrificing model fidelity. Specifically, we design a new drop-and-grow strategy with decreasing number of non-zero weights, to maintain extreme high sparsity and high accuracy. We evaluate NDSNN using VGG-16 and ResNet-19 on CIFAR-10, CIFAR-100 and TinyImageNet. Experimental results show that NDSNN achieves up to 20.52\% improvement in accuracy on Tiny-ImageNet using ResNet-19 (with a sparsity of 99\%) as compared to other SOTA methods (e.g., Lottery Ticket Hypothesis (LTH), SET-SNN, RigL-SNN). In addition, the training cost of NDSNN is only 40.89\% of the LTH training cost on ResNet-19 and 31.35\% of the LTH training cost on VGG-16 on CIFAR-10
    corecore